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Đặt�vấn�đề

Các� nhóm� tác� giả� trong� [1,� 2]�
đã�trình�bày�lý�thuyết�về�trích�đặc�
trưng�tiếng�nói�dùng�phương�pháp�
MFCC�và�bộ�giải�mã�tiếng�nói�dùng�
HMM�với�nhiều�cải�tiến�mới�dùng�
cho�nhận�dạng�các�số�tiếng�Anh�từ�
0� đến� 9.� Các� nhóm� tác� giả� trong�
[3]� đã� thực� hiện� thành� công� trên�
FPGA� Cyclone� II,� với� việc� nhận�
dạng�1�số�từ,�thể�hiện�bằng�việc�bật�
sáng� các� đèn� led� bằng� giọng� nói.�
Trong� bộ� trích� đặc� trưng,� do� tính�
chất� phức� tạp� khi� thực� thi� phần�
cứng�phép�biến�đổi�FFT,�nên�nhóm�
tác� giả� này� sử� dụng� module� FFT�
1024�điểm,�được�hỗ� trợ�sẵn� trong�
IP� Megacore� của� Altera.� Đối� với�
bộ�giải�mã�tiếng�nói,�nhóm�tác�giả�
trong�[4]�dùng�phương�pháp�lượng�
tử� vectơ� (VQ),� phương� pháp� này�
chỉ� thích� hợp� cho� nhận� dạng� với�
bộ�từ�vựng�nhỏ�(khoảng�10-20�từ).�
Ngoài�ra,�các�tác�giả�này�cũng�đưa�

Kiến�trúc�vi�mạch�cho�nhận�dạng�tiếng�nói�
tiếng�Việt�thiết�kế�theo�quy�trình�ASIC,�
trên�nền�công�nghệ�130�nm�TSMC��

������������,�Phạm�Đăng�Lâm,�Trần�Văn�Hoàng

Trường�Đại�học�Bách�khoa,�Đại�học�Quốc�gia�TP�Hồ�Chí�Minh

Ngày�nhận�bài�19.3.2015,�ngày�chuyển�phản�biện�25.3.2015,�ngày�nhận�phản�biện�21.4�.2015,�ngày�chấp�nhận�đăng�26.4.2015

Nhận�dạng�tiếng�nói��ã��ược�nghiên�cứu�từ�hơn�60�năm�qua.�Những�nỗ�lực��ầu�tiên��ược�thực�hiện�
từ�những�năm�50��ến��ầu�những�năm�70�của�thế�kỷ�trước,�hệ�thống�nhận�dạng�tiếng�nói��ược�thiết�
kế��ể�nhận�dạng�phát�âm�rời�rạc�trong�môi�trường�nhiễu�thấp,�chủ�yếu�là�các�hệ�thống�với�bộ�từ�
vựng�nhỏ�(10-100�từ),�trong�trường�hợp�người�nói�cũng�là�người�huấn�luyện.�Ngày�nay,�các�hệ�thống�
nhận�dạng�với�số�từ�vựng�lớn��ược�xây�dựng�trên�nền�tảng�hệ�thống�máy�tính�với�tốc��ộ�xử�lý�cao.�
Khi�mật��ộ�tích�hợp�vi�mạch�tăng,�việc�tiếp�cận�ứng�dụng�nhận�dạng�trên�phần�cứng�hay�các�thiết�
bị�cầm�tay�trở�nên�khả�thi.�Trong�nghiên�cứu�này,�nhóm�tác�giả�trình�bày�một�kiến�trúc�vi�mạch��ược�
thiết�kế�theo�quy�trình�ASIC,�trên�nền�công�nghệ�130�nm�TSMC,�ứng�dụng�trong�nhận�dạng�giọng�
nói�tiếng�Việt,��ể��áp�ứng�yêu�cầu�khắt�khe�về�hiệu�năng�nhận�dạng�và�tính�thời�gian�thực�trong�các�
ứng�dụng�thực�tế.

Từ�khóa:�dãy�cổng�lập�trình�được�(FPGA),�hàm�phân�bố�xác�suất�Gauss,�hệ�thống�nhận�dạng�giọng�
nói�tự�động�(ASR),�mô�hình�Markov�ẩn�(HMM),�trích�đặc�trưng�thang�tần�số�mel�(MFCC).
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Speech�recognition�has�been�researched�over�sixty�years.�The�
first�researches�were�conducted�from�the�1950s�till� the�early�
1970s,�some�complete�recognition�systems�were�developed�to�
recognise�incoherent�pronounciation�in�low�noise�conditions�
and�only�adapted�to�small�word�libraries�(10-100�words)�which�
belong�to�the�trainers�as�well�as�the�recognition�persons.�Today,�
the� recognition� systems� adapting� to� the� large� word� library�
are�built�based�on�computer�system�with�high�performance.�
Moreover,� when� integrated� density� is� enhanced,� the� access�
to� the�hardware�or�handset�applying�recognition�technology�
becomes�feasible.�In�this�work,�an�ASIC�based�architecture�for�
Vietnamese�speech�recognition�on�the�basis�of�130�nm�TSMC�
technology�is�illustrated�to�meet�the�real�time�requirements�as�
well�as�confirm�the�highly�effective�performance.�

Keywords:�auto�speech�recognition�(ASR),�field-programmable�
gate�array� (FPGA),�Gaussian�probability�distribution,�hidden�
Markov� model� (HMM),� mel-frequency� cepstral� coefficient�
(MFCC).
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ra�hướng�phát�triển�tiếp�theo�là�dùng�mô�hình�HMM,�
nhưng�yêu�cầu�thực�thi�phần�cứng�phức�tạp.�Tương�tự,�

một�số�tổ�chức�nổi�tiếng�trên�thế�giới�như�ATR,�AT&T�
hay� IBM...� [5-10]� cũng�đưa�ra�nhiều� giải�pháp�khác�
nhau�cho�ứng�dụng�nhận�dạng�giọng�nói,�chủ�yếu�mô�

hình�HMM�được�áp�dụng�một�cách�phổ�biến.�Bên�cạnh�
đó,�cũng�có�các�công�trình�đề�nghị�cách�xây�dựng�môi�

trường�kiểm�tra�thiết�kế�nhận�dạng�tiếng�nói�[11],�hay�
các�thiết�kế�nâng�cao�hơn�trong�giao�tiếp�bộ�nhớ�[12],�
cũng�như�thiết�kế�layout�cho�chip�nhận�dạng�tiếng�nói�

trên,�những�công�nghệ�mới�như�40�nm�[13].�Bảng�1�
thể�hiện�danh�sách�và�so�sánh�chip�của�các�hãng�trên�
thế�giới.

Như� vậy,� những� thành�quả� cơ�bản� có�được� trong�
nhận�dạng�tiếng�nói�là�nhờ�kết�hợp�hai�hướng�tiếp�cận�
phần�cứng�và�phần�mềm.�Tuy�nhiên,�nhiều�hạn�chế�còn�

tồn�tại�với�các�cách�tiếp�cận�như:�các�hướng�tiếp�cận�

phương�pháp�huấn�luyện�vẫn�thông�qua�hệ�thống�máy�
tính�nhằm�phục�vụ�những�phép�toán�và�giải�thuật�phức�
tạp;�việc�nhận�dạng�bằng�phần�cứng�dựa�trên�các�sản�
phẩm�cầm�tay�còn�hạn�chế�bởi�khối�lượng�giải�thuật�đồ�
sộ�cũng�như�khả�năng�mở�rộng�số�từ�vựng.

Ở�Việt�Nam,�vấn�đề�này�mới�được�quan�tâm�nghiên�
cứu� trong� những� năm�gần� đây.� Đến� nay,� đã� có�một�
số�công�trình�nghiên�cứu�về�lĩnh�vực�này,�theo�nhiều�
hướng�tiếp�cận�khác�nhau,�song�kết�quả�đạt�được�chưa�
cao,�vẫn�có�khả�năng�phát�triển�hơn�nữa,�vì�hầu�hết�chỉ�
theo� hướng� tiếp�cận� phần�mềm�là� chủ�yếu.�Để�khắc�
phục�những�tồn�tại�của�các�hệ�thống�nhận�dạng�giọng�
nói�trên�thế�giới�nói�chung�và�ở�Việt�Nam�nói�riêng,�
nhóm�nghiên�cứu�trình�bày�một�kiến�trúc�vi�mạch�nhận�
dạng� giọng� nói� tiếng� Việt� cải� tiến� ở� cấp� độ� từ� đơn.�
Thiết� kế� được� sản� xuất� trên� nền� công� nghệ� 130� nm�
TSMC,�sau�đó�được�kiểm�tra�ứng�dụng�hoàn�chỉnh�trên�
bo�mạch�tự�phát�triển.�Bài�viết�này�là�kết�quả�nghiên�
cứu�của�Đề� tài�“Nghiên�cứu� thiết�kế� lõi� IP�mềm,� IP�
cứng�cho�IC�nhận�dạng�tiếng�nói�tiếng�Việt�và�chế�tạo�
thiết�bị�trợ�giúp�người�khuyết�tật�bằng�tiếng�nói”,�mã�
số�KC01.23/11-15,�thuộc�Chương�trình�KH&CN�trọng�
điểm� cấp� nhà� nước� KC01/11-15� về� nghiên� cứu�ứng�
dụng�và�phát�triển�công�nghệ�thông�tin�và�truyền�thông.

Trích�đặc�trưng�MFCC�và�mô�hình�HMM

Trích�đặc�trưng�MFCC

Phương�pháp�trích�đặc�trưng�MFCC�được�lựa�chọn�
cơ� bản� rút� trích� các� đặc� trưng� tần� số� của� tiếng� nói.�
Những� bước� chính� của� trích� đặc� trưng� MFCC� được�
mô�tả�như�hình�1.

Chất�lượng�và�xác�suất�nhận�dạng�của�toàn�bộ�hệ�
thống�ngoài�phụ�thuộc�vào�việc�chọn�lựa�mô�hình�xác�
suất� tối�ưu,� còn�phụ� thuộc�nhiều�vào�chất�lượng�của�
các� đặc� trưng� được� trích� xuất.� Mặt� khác,� trích� xuất�
MFCC�gồm�nhiều�bước�nhỏ�khác�nhau,�trong�đó�một�
số�hệ�số�nhạy�cảm�ảnh�hưởng�đến�xác�suất�nhận�dạng�
của�hệ�thống�tồn�tại�bên�trong�những�khối�này,�như�hệ�
số�của�các�bộ�lọc�và�số�bộ�lọc�tương�ứng.�

677 7������S Hãng�thiết�kế,�
sản�xuất

Số�từ�⇔�đặc�tính�số�giọng�
người�nói

Thời�gian�nhận�
dạng

Độ�chính�xác Độc�lập/
phụ�
thuộc�
người�
nói

1

DVC306

D6106

����

Communications

16�từ:�8�giọng�nói�của�8�người

128�từ:�1�giọng�duy�nhất

Đối�với�16�từ:�<1�s 92%�(theo�luật�
Hyde�-�Hyde’s�
law)*

Không/có

2 HM2007 Motorola 20�từ:�1�giọng�nói�duy�nhất 1,9�s
Không�công�bố�
cụ�thể

Không/có

3 MSM�6679 OKI�Group
Tối�đa�25�từ:�2�giọng�
người�nói

Không�công�bố�
cụ�thể

97%�(theo�luật�
Hyde�-�Hyde’s�
law)*

4 RSC-164 SENSORY�

20-50�từ:�Không�đề�cập�đến�
bao�nhiêu�giọng�người�nói,�mà�
chỉ�đề�cập�là�phụ�thuộc�người�
nói�(cần�huấn�luyện�trước)

Không�công�bố�
cụ�thể

93%�(theo�luật�
Hyde�-�Hyde’s�
law)*

5 TC�8860F TOSHIBA�
10�từ:�Nhận�dạng�từ�rời�rạc,�
phụ�thuộc�người�nói�(cần�huấn�
luyện�trước)

Không�công�bố�
cụ�thể

Không�công�bố�
cụ�thể

Không/có

6 TC8865F-00 TOSHIBA�
20�từ:�Nhận�dạng�từ�rời�rạc,�
phụ�thuộc�người�nói�(cần�huấn�
luyện�trước)

Không�công�bố�
cụ�thể

Không�công�bố�
cụ�thể

Không/có

7 5A128 RICOH�

10�từ:�Phụ�thuộc�người�nói�
3�từ:�Độc�lập�người�nói

Tối�đa:�5�s�(đối�với�
nhận�dạng�10�từ)
Tối�đa:�2�s�(đối�với�
nhận�dạng�3�từ)

95%�(theo�luật�
Hyde�-�Hyde’s�
law)*

Có/có

8 RF5A65 RICOH� 60�từ:�1�giọng�nói Tối�đa:�2�s
92%�(theo�luật�
Hyde�-�Hyde’s�
law)*

Không/có

Bảng�1:�các�sản�phẩm�nhận�dạng�giọng�nói

Hình�1:�các�bước�trích�đặc�trưng�MFCC

(*)�Luật�Hyde�(Hyde’s�law):�luật�này�được�đưa�ra�bởi�R.S.�Hyde�
và�được�sử�dụng� rộng� rãi� trong�giới� chuyên�môn�về� lĩnh�vực�nhận�
dạng�tiếng�nói�như�sau:�“độ�nhận�dạng�chính�xác�của�bộ�nhận�dạng�
tiếng�nói�là�98%,�vì�bộ�nhận�dạng�tiếng�nói�có�độ�nhận�dạng�chính�xác�
là�98%�thì�bộ�mẫu�kiểm�tra�phải�được�sắp�xếp�để�chứng�tỏ�điều�đó”�
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Mô�hình�xác�suất�HMM

Mô�hình�HMM�là� mô�hình� thống�kê� quen� thuộc,�
được�áp�dụng�rộng�rãi�trong�nhiều�ứng�dụng�khác�nhau.�
Trong�ứng�dụng�nhận�dạng�giọng�nói,�mô�hình�HMM�
dạng�tiến�(hình�2)�được�sử�dụng,�mang�lại�những�thành�
công� nhất� định.� Mô� hình�này� tương� tự� các�mô�hình�
HMM�khác,�các�thông� số�bao�gồm:�xác� suất�chuyển�
trạng�thái,� tập�các�giá�trị�“mean”�và�“covarian”�cũng�
như�xác�suất�cho�từng�bộ�trộn�bên�trong�trạng�thái.

Hình�2:�mô�hình�HMM�dạng�tiến

Hệ�thống�nhận�dạng�giọng�nói

Bất�cứ�một�hệ�thống�nhận�dạng�giọng�nói�nào�cũng�
bao�gồm�hai�quá�trình�chính:�quá�trình�huấn�luyện�và�
quá�trình�nhận�dạng�(quá�trình�giải�mã).�Trong�cả�hai�
quá�trình�này,�không�thể�thiếu�kiến�trúc�trích�đặc�trưng�
giọng�nói,� hình� 3� mô� tả� các� khối� cơ� bản� về�một�hệ�
thống�nhận� dạng�giọng� nói� hoàn� chỉnh.� Như� đã�nêu�
ở�trên,�quá�trình�huấn�luyện�yêu�cầu�tập�mẫu�các�âm�
thanh�đầu�vào�lớn,�các�giải�thuật�huấn�luyện�phức�tạp,�
nên�cần�tiếp�cận�các�hệ�thống�máy�tính�cho�quá�trình�
này.�Sản�phẩm�của�quá�trình�huấn� luyện�được�gọi�là�
bộ�thông�số�mô�hình.�Quá�trình�huấn�luyện�dựa�trên�
mô�hình�HMM�tiến�cơ�bản�đã�được�tìm�hiểu�và�ứng�
dụng�rộng�rãi�nên�các�công�thức�phức�tạp�không�được�
đề�cập.

Tương�tự�quá�trình�huấn�luyện,�mẫu�âm�thanh�được�
trích� đặc� trưng� trước� hết� trong� quá� trình� nhận�dạng.�
Giả�sử,�sau�khi�trích�đặc�trưng�cho�ra�25�vector�MFCC�
26�chiều,�có�thể�hiểu�rằng�ngõ�vào�của�quá�trình�nhận�
dạng�là�25�vector�26�chiều.�Kết�hợp�với�tập�thông�số�

mô�hình�từ�quá�trình�huấn�luyện�gồm�50�mô�hình,�mỗi�
mô�hình�bao�gồm� tập�xác�suất�chuyển�trạng�thái�(16�
giá� trị�chuyển�trạng�thái�tương�ứng�8�trạng�thái),�tập�
xác�suất�bộ�trộn�(32�giá�trị�tương�ứng�mỗi�trạng�thái�có�
4�bộ�trộn),�tập�các�cặp�vector�“mean”�và�“covariance”�
(32�cặp�vector�tương�ứng�mỗi�bộ�trộn�là�một�cặp).�Cụ�
thể,� công� thức� để� tính� xác� suất� cho� một� vector� đặc�
trưng�26�chiều�với�một�trạng�thái�bao�gồm�4�bộ�trộn�
được�thể�hiện�qua�hàm�phân�bố�Gauss�như�sau:

Với

Trong�đó,�N�là�số�trạng�thái�(N�=�8);�M�là�số�bộ�trộn�
(M�=�4);�o�là�vector�đặc� trưng�(hay�còn�gọi�là�chuỗi�
quan� sát�-�26�phần� tử);�µ� là�vector� “mean”�(26�phần�
tử);�U�là�vector�“covariance”�(26�phần�tử);�c

jk
�là�xác�

suất�rơi�vào�bộ�trộn�thứ�k�trong�trạng�thái�thứ�j.

Vấn�đề�ở�đây� là,� trong�ví�dụ� trên�ta�có�25�vector�
MFCC�trích�đặc�trưng�cùng�với�8� trạng�thái,�vậy�thì�
vector�nào�tương�ứng�trạng�thái�nào�sẽ�cho�kết�quả�xác�
suất�lớn�nhất?�Theo�logic,�cần�tính�đến�là�168�lần�hàm�
phân�bố�xác�suất�Gauss,�cùng�với�các� thuật�toán� lựa�
chọn�sẽ�cho�kết�quả�chính�xác.�Phương�pháp�này�có�
thể�xem�là�phương�pháp�vét�cạn.�Để�cải�thiện�điều�này,�
thuật�toán�Viterbi�được�mô�tả�như�hình�4,�đang�được�
áp�dụng�rộng�rãi.

Hình�3:�mô�hình�hệ�thống�nhận�dạng�hoàn�chỉnh

Hình�4:�giải�thuật�Viterbi�



��������������

Kiến�trúc�vi�mạch�ứng�dụng�nhận�dạng�giọng�nói

Trích�đặc�trưng�MFCC

Phương�pháp:�kiến�trúc�vi�mạch�tiếp�cận�việc�nhận�
dạng�giọng�nói�bao�gồm�hai�thành�phần�trích�đặc�trưng�
và�nhận�dạng�giọng�nói,�như�thể�hiện�ở�hình�5.

Hình�5:�các�khối�chính�trong�kiến�trúc�vi�mạch�nhận�dạng�giọng�nói

Tuy�nhiên,�khi�tiếp�cận�phần�cứng,�có�một�số�vấn�đề�
nảy�sinh,�trong�đó�FFT�là�vấn�đề�đáng�lưu�ý.�Để�có�thể�
giải�quyết�những�thông�số�ảnh�hưởng�xấu�đến�kết�quả�
trích�đặc�trưng�và�nhận�dạng,�việc�kết�hợp�giữa�khảo�
sát� và� tính�khả� thi� trong� thực�nghiệm� trên� là� rất� cần�
thiết.�Mặt�khác,�các�ngôn�ngữ�khác�nhau�và�đặc�tính�
vùng�miền�tạo�nên�sự�khác�biệt�về�các�đặc�trưng.�Việc�
áp�đặt�các�cấu�hình�cứng�nhắc�sẽ�cho�những�kết�quả�
không�như�mong�đợi.

Thực�nghiệm:�kiến�trúc�trích�đặc�trưng�tương�tự�như�
lý�thuyết�tiếp�cận�bao�gồm�các�thành�phần�chính�với�
những�đặc�trưng�chi�tiết�đã�được�khảo�sát�trong�bảng�2.

Bảng�2:�cấu�hình�trích�đặc�trưng�MFCC

Mô�hình�HMM

Phương�pháp:�như�đã�nêu�trên,�việc�tính�theo�khuôn�
mẫu� với� phương� pháp� vét� cạn� cho� kết� quả� tốt� nhất,�
nhưng�do� khả�năng�đáp� ứng� tính� thời�gian� thực�nên�
không�khả�thi.�Nếu�dựa�trên�yêu�cầu�ứng�dụng�cao�về�
độ�chính�xác,�phương�pháp�vét�cạn�vẫn�được�chọn�lựa,�
nhưng� trên� thực� tế,�những�ứng�dụng�cụ� thể� luôn�đòi�
hỏi�tính�đáp�ứng�thời�gian�thực�ở�mức�độ�cần�thiết.�Do�
đó,�để�đáp�ứng�được�hai�yêu�cầu�khắt�khe�này,�kỹ�thuật�
song�song�được�áp�dụng�nhằm�tăng�tốc�độ�xử�lý.�Tuy�
nhiên,�kỹ�thuật�này�có�điểm�yếu�là�quá�trình�quản�lý,�
điều�khiển�dữ�liệu�phức�tạp�nên�sự�hao�tốn�tài�nguyên�
cần�được�lưu�ý�chặt�chẽ.

Một�vấn�đề�khác�cần�được�quan�tâm�khi�tiếp�cận�
phần�cứng�theo�hướng�ASIC�là�các�kiến�trúc�và�chức�
năng� gần�như�không� thể� thay� đổi.�Đây� là�một� trong�
những� bất� lợi� khi� tiếp� cận�ASIC� thay� vì� FPGA.�Để�
giải�quyết�vấn�đề�này,�tiếp�cận�phần�cứng�sao�cho�khả�
năng�cấu�hình�động�là�điều�cần�thiết,�dựa�trên�mô�hình�
MFCC�tiếp�cận�với�mỗi�vector�MFCC�26�chiều.�Các�
thông�số�cơ�bản�của�mô�hình�HMM�cũng�được�giới�
thiệu�chi�tiết�ở�bảng�3�với�khả�năng�thay�đổi�được.

Bảng�3:�mô�hình�HMM�tiếp�cận�phần�cứng

Số�trạng�thái 8�(có�thể�thay�đổi�được)

Số�bộ�trộn 4

Số�vector�“mean”/“covariance” 26�(có�thể�thay�đổi�được)

Thực�nghiệm:�khi�tiếp�cận�mô�hình�song�song�có�
hai�giải�pháp�như�sau:�một�vector�MFCC�được�tính�với�
nhiều� trạng�thái�khác�nhau;�một�trạng� thái�được�tính�
với�nhiều�MFCC�khác�nhau.

Về�khía�cạnh�phần�cứng,�số�vector�MFCC�là�không�
ổn�định�cho�các�mẫu�từ�dài�ngắn�khác�nhau,�ví�dụ�với�
các�mẫu�từ�đơn,�thường�không�dưới�10�vector�MFCC.�
Trong�khi�đó,� các�mô�hình�HMM�cho�các�ngôn�ngữ�
khác�nhau�có�số�trạng�thái�khác�nhau,�nhưng�tương�đối�
nhỏ,�số�trạng� thái� thường�lớn�hơn�hoặc�nhỏ�hơn�gần�
với�10.�Chính�vì�vậy,�việc�áp�dụng�cơ�chế� tính�song�
song�cho�mỗi�MFCC,�với�nhiều�trạng�thái�khác�nhau�
mang�tính�khả�thi�và�ổn�định�cao.�Một�vấn�đề�khác�cần�
được�quan�tâm�là�khối�kiến�trúc�tính�xác�suất�phân�bố�
Gauss.�Khối�này�giữ�vai�trò�không�thể�thiếu�trong�quá�
trình�tính�toán�các�xác�suất�thành�phần�tương�ứng�với�
mỗi�vector�MFCC�và�trạng�thái.�Để�có�thể�thực�hiện�
được�cơ�chế�song�song,�kiến�trúc�chi�tiết�được�áp�dụng�
như�hình�6.

Thông�số Chọn�lựa So�sánh

Có�sử�dụng�bộ�lọc ��

Sử�dụng�bộ�lọc Xác�suất�(%)

��� 92,7

Không 83,3

Giá��trị��hệ��số��bộ��tiền�lọc 31/32

Hệ�số Xác�suất�(%)�

31/32�� 92,2�

15/16 84,3

7/8�� 78,6

Số��điểm��trong��một�khung� 160

Số�điểm Xác�suất�(%)

160�� 92,3

80�� 84,4

Tỷ�lệ�chồng�lấp� 50%

Tỉ�lệ�(%) Xác�suất�(%)�

50 92,2�

40 90

30 87

Số�điểm�FFT 256

Số�điểm Xác�suất�(%)

160�� 92,3

80�� 84,4

Cấu�hình�bộ�lọc�MEL Vuông

Kiểu�bộ�lọc Xác�suất�(%)

Tam�giác 94,5

Chữ�nhật 90,1

Số�bộ�lọc�MEL� 27

Số�bộ�lọc Xác�suất�(%)

27 94

26 90

25 91

24 89

23 90

Số�hệ�số�ceptrum� 12

Số�hệ�số�năng�lượng� 1

Số�hệ�số�cho�một�vector�MFCC 26
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Có�thể�thấy,�8�luồng�song�song�được�áp�dụng.�Để�
tạo�8�luồng�song�song�này,�bộ�nhớ�tạm�dùng�để�lưu�trữ�
mô�hình�thông�số�cho�một�trạng�thái�và�8�MFCC�một�
lúc�được�sử�dụng.�Chi�tiết�kiến�trúc�được�mô�tả�ở�phần�
sau:

Module�Write� -�Mem:� thực�hiện�việc�đọc�các�giá�
trị� mô� hình� trạng� thái� của� quá� trình� huấn� luyện� từ�
solfware,�được�lưu�vào�trong�FLASH�(với�các�cấu�hình�
sử�dụng�bộ�nhớ�FLASH�được�trình�bày�trong�bảng�4),�
các�giá�trị�đặc�trưng�của�mẫu�âm�thanh�được�lưu�trong�
SRAM.

Bảng�4:�cấu�hình�sử�dụng�bộ�nhớ�FLASH

Module�GCU:�tính�xác�suất�tại�1�bộ�trộn�của�mỗi�
trạng�thái�cho�từng�MFCC�khác�nhau,�theo�8�luồng�dữ�
liệu.�Thực�hiện� tính� song�song� (theo�sơ�đồ� tính�toán�
trong�hình�7)�giúp�giảm�thời�gian�của�quá�trình�tính�giá�
trị�xác�suất�cho�mỗi�bộ�trộn.�Sau�khi�tính�được�xác�suất�
của�4�bộ�trộn�của�1�trạng�thái,�ta�có�thể�thực�hiện�giải�
mã��Máy�trạng�thái�(State�machine)�cho�bộ�GCU�được�
thiết�kế�như�trong�hình�8.

Hình�7:�cơ�chế�tính�song�song�8�luồng�dữ�liệu

Hình�8:�các�trạng�thái�bộ�GCU�tính�giá�trị�biot

Module� Viterbi:� thuật� toán� Viterbi� vét� cạn� được�
thực�hiện�cứng�hóa�theo�đúng�như�giải�thuật�giải�mã,�
sau�khi�nhận�giá�trị�từ�bộ�GCU�(8�luồng),�ta�có�được�8�
giá�trị�xác�suất,�các�giá�trị�này�sẽ�được�tính�toán�với�các�
giá�trị�xác�suất�chuyển�trạng�thái,�chọn�lọc�giá�trị�lớn�
nhất�sau�cùng�được�giữ�lại.�Như�vậy,�quá�trình�được�
lặp�lại�nhiều�lần�mỗi�khi�có�8�giá�trị�được�hoàn�tất�từ�
khối�tính�GCU,�việc�lặp�lại�này�được�mô�tả�bởi�hình�
9,�đặc�trưng�cho�quá�trình�chuyển�trạng�thái�của�toàn�
bộ�hệ�thống.

Hình�6:�tổng�quan�các�module�trong�quá�trình�nhận�dạng

[22:18]�=�0
Information�[17]
‘0’:�Các�thông�số�mô�hình
‘1’:�Các�giá�trị�mô�hình

Word_num
[16:11]

State_num
[10:8]

Mixture
[7:6]

[5:0]�Mean�&�Cov�&�
lnC�&�aii�&�aij�-�aii

Hình�9:�sơ�đồ�máy�trạng�thái�bộ�giải�mã�VIR
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Xác�suất�lớn�nhất�cuối�cùng�tương�ứng�với�chỉ�số�từ�

được�lưu�trong�thanh�ghi�điểm�số�cuối�cùng.�Khi�kết�

thúc,�hệ�thống�xuất�ra�tín�hiệu�“Result_ack”,�cùng�với�

chỉ�số�của�từ�trong�thanh�ghi�điểm�số�cuối�cùng,�đó�là�

kết�quả�nhận�dạng.

Kết�quả�và�thảo�luận

Việc�thực�nghiệm�trước�hết�được�mô�phỏng�với�các�

giản�đồ�xung�clock,�đảm�bảo�chức�năng�được�thực�hiện�

một�cách�chính�xác.�Sau�khi�xác�nhận�các�kết�quả�mô�

phỏng�là�khả�quan,�một�lần�nữa�toàn�bộ�kiến�trúc�được�

kiểm�tra�và�chạy�thử�trên�FPGA�nhằm�đảm�bảo�chính�

xác,�tính�hiện�thực.�Đây�là�bước�không�thể�thiếu�trong�

quy�trình� thiết�kế�chip�ASIC,�đòi�hỏi�khắt�khe�trong�

các� khâu� kiểm� tra� và� hiện� thực.� Để� có� thể� kiểm� tra�

tính�chính�xác�của�thiết�kế�một�cách�thực�tế,�một�mô�

hình�trên�kit�thực�tế�đã�được�thực�hiện.�Trong�mô�hình�

này,� toàn�bộ�thiết�kế�HMM�được�kiểm�tra�bằnh�cách�

hiện�thực�trên�kit�FPGA�tự�xây�dựng�của�nhóm�nghiên�

cứu�iHearTech�(hình�10)�[14].�Các�kết�quả�về�trích�đặc�

trưng,�thông�số�mô�hình�không�còn�xử�lý�dưới�dạng��le�

mà�được�nạp�lên�các�kiến�trúc�phần�cứng�được�hỗ�trợ�

trên�kit�như�SRAM,�ROM…�

Lấy�ngẫu�nhiên�một�số�mẫu�đúng�và�sai� (50�mẫu�

bất�kỳ)�đã�mô�phỏng�của�thiết�kế�phần�cứng�lẫn�phần�

mềm,�đem�kiểm�tra�lại� trên�FPGA�với�mô�hình�kiểm�

tra�trên,�cho�các�kết�quả�tương�đồng.�Điều�này�đảm�bảo�

tính�chính�xác,�khả�thi�trong�thực�tế�của�hệ�thống.�Cụ�

thể,�kết�quả�tiêu�biểu�thu�được�từ�tập�mẫu�của�nhiều�

người,�với�mô�hình�HMM�cho�hệ�thống�nhận�dạng�đã�

được�hệ�thống� tiến�hành�thử�nghiệm�với�bộ� từ�vựng�

gồm�50�từ�(hình�11),�được�đánh�giá�cho�thấy�kết�quả�

khả�thi�của�thiết�kế.

Kết�quả�nhận�dạng�phần�cứng�được�so�sánh�với�các�

kết�quả�phần�mềm�cũng�như�mô�phỏng�cho�thấy,�độ�

tương�đồng�lớn�(92%).�Điều�này�cho�thấy�tính�khả�thi�

và�độ�tin�cậy�của�việc�thực�thi�phần�cứng.�Sau�khi�các�

phương�pháp�kiểm�tra�được�thực�hiện�chính�xác,�thiết�

kế� được�chuyển�xuống� tổng�hợp� và� thực�hiện�ở�các�

bước�vật�lý�thấp�hơn.�Hình�12�cho�thấy,�sản�phẩm�cuối�

cùng�hoàn�thành�ở�cấp�độ�vật�lý,�trên�công�nghệ�130�

nm�TSMC.�Hình�13� là�chip� iHearTech�được�chế� tạo�

hoàn�chỉnh�của�nhóm�nghiên�cứu�iHearTech�chúng�tôi�

[14].

“KHÔNG”,“MỘT”,“HAI”,“BA”,“BỐN”,“NĂM”,“SÁU”,“BẢY”,“TÁM”
“CHÍN”,“LỊCH”,“SỬ”,“VĂN”,“HÓA”,“GIÁO”,“DỤC”,“KHOA”,“HỌC”
“NÔNG”,“NGHIỆP”,“CÁ”,“HEO”,“GÀ”,“VỊT”,“SỨC”,“KHỎE”,“CÂY”

“HOA”,“BẬT”,“TẮT”,“MỞ”,“ĐÓNG”,“ĐÈN”,“QUẠT”,“CỬA�”,“PHỎNG”
“KHÁCH”,“NGỦ”,“BẾP”,“DỪNG”,“BỎ”,“QUA”,“TIẾP”,“TỤC”,“TÔI”

“NGHE”,“MUỐN”,“TIN”,“CHÀO”,“BẠN”

Hình�10:�mô�hình�kiểm�nghiệm�trên�kit�FPGA�của�nhóm�tác�giả�[14]

Hình�12:�kiến�trúc�ở�cấp�độ�vật�lý�công�nghệ�130�nm�TSMC

Hình�11:�bộ�từ�vựng�cần�nhận�dạng

Hình�13:�chip�iHearTech�được�chế�tạo�hoàn�chỉnh�[14]
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Kết�luận

Nhóm�nghiên�cứu�đã� trình�bày�kiến� trúc�vi�mạch�
được�thiết�kế�theo�quy�trình�ASIC,�trên�nền�công�nghệ�
130�nm�TSMC,�ứng�dụng�trong�nhận�dạng�giọng�nói�
tiếng�Việt.�Các�kết�quả�kiểm�tra�theo�quy�trình�ASIC�
cũng�như�trên�FPGA�cho�xác�suất�nhận�dạng�cao,�thời�
gian�dưới�1�giây,�đáp�ứng�yêu�cầu�khắt�khe�về�thời�gian�
thực�trong�các�ứng�dụng�cụ�thể.

Các�phát�triển�ứng�dụng�cụ�thể,�tích�hợp�sản�phẩm�
vi�mạch,�sẽ�được�tiếp�tục�để�hướng�đến�những�giá�trị�
thiết�thực�trong�cuộc�sống.�Bên�cạnh�đó,�kiến�trúc�vi�
mạch�đề�xuất�cũng�sẽ�được�nghiên�cứu�và�phát�triển�
với�các�định�hướng�nghiên�cứu�tối�ưu�về�công�suất,�tốc�
độ�cũng�như�các�ứng�dụng�câu�phức�tạp.
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