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Lý�thuyết�phân�bố�giá�trị�các�hàm�phân�hình,�hay�còn�gọi�là�lý�thuyết�

Nevanlinna,�là�một�trong�những�hướng�nghiên�cứu�trung�tâm�của�giải�tích�

phức.�ở�Việt�Nam,�m��đầu�b�i�các�công�trình�nổi�tiếng�của�giáo�sư�Lê�Văn�

Thiêm�về�bài�toán�ngược�của�lý�thuyết�Nevanlinna,�hướng�nghiên�cứu�này�

đang�được�tiếp�tục�phát�triển�mạnh.�Bài�viết�này�nhằm�cung�cấp�một�tổng�

quan�ngắn�về�lý�thuyết�Nevanlinna,�đặc�biệt�chú�trọng�đến�một�số�đóng�

góp�của�các�nhà�toán�học�Việt�Nam�trong�lý�thuyết�Nevanlinna�trên�trường�

không�Acsimet,�là�lý�thuyết�được�xây�dựng�lần�đầu�tiên�trong�công�trình�

[1],�và�ngày�nay�đã�tr��thành�một�hướng�nghiên�cứu�mạnh�trong�và�ngoài�

nước.

Ta�có�thể�bắt�đầu�từ�Định�lý�cơ�bản�của�đại�số:

Định�lý.�Giả�sử

f�(z)�=�a
�
�+�a

�
z�+...+�a

�
z�

là�đa�thức�bậc�n�≥�1,�với�hệ�số�phức.�Khi�đó�với�mỗi�giá�trị�a,�phương�trình�

f�(z)�=�a�có�n�nghiệm�(kể�cả�bội).

Lý�thuyết�Nevanlinna�nghiên�cứu�vấn�đề�Hàm�phân�hình�f�(z)�nhận�mỗi�

giá�trị�a�∈����bao�nhiêu�lần,�hay�nói�cách�khác,�làm�thế�nào�để�đo�tập�hợp�

� �� ( a ) ?

Kết�quả�quan�trọng�đầu�tiên�theo�hướng�này�thuộc�về�Hadamard.

Định�lý�Hadamard.�Giả�sử�f�( z ) �là�hàm�chỉnh�hình�trong��.�Khi�đó�

(số�không�điểm�của�f�trong�{|z|�≤�r})�≤�logmax�|f�(z)|�+�O(1),�trong�đó�O(1)�

phụ�thuộc�f,�nhưng�không�phụ�thuộc�r.

Kết�quả�này�chưa�phải�là�“lý�tư�ng”,�vì�có�hai�nhược�điểm�sau:

a)�Khi��� là�hàm�phân�hình,�vế�phải�của�bất�đẳng�thức�là�vô�cùng,�và�

Định�lý�Hadamard�không�đưa�lại�thông�tin�gì�về�số�không�điểm�của�hàm��.

b)�Tồn�tại�những�hàm,�chẳng�hạn,�f�(z�� ��z,�không�có�không�điểm,�và�

trong�trường�hợp�đó,�bất�đẳng�thức�Hadamard�tr��nên�tầm�thường.

Để�khắc�phục�những�nhược�điểm�trên,�R.�Nevanlinna�định�nghĩa�các�

hàm�sau�đây.
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1.1. Hàm đếm. Giả sử a ∈ C. Đặt
n(a, r) = �{không điểm của f (z)− a trong {|z| < r}, kể cả bội}

N(a, r) =
r

o

n(a, t)− n(a, 0)
t

dt+ n(a, 0) log r

1.2.Hàm đặc trưng. Thay cho log|z|≤r |f(z)| ta xét hàm:

T (r) =
1

2π

2π

o

log+ |f (reiθ)|dθ +N(∞, r)
Sử dụng hai hàm này, ta nhận được bất đẳng thức sau

đây:

N(0, r) ≤ T (r) +O(1)
Bất đẳng thức này đúng và không tầm thường ngay cả

đối với các hàm phân hình.

Để khắc phục nhược điểm thứ hai, ta chú ý rằng, hàm

ez tuy không có không điểm, nhưng nhận rất nhiều giá

trị "gần với 0". Ta dùng hàm sau đây để "đo" tập hợp tại

đó hàm nhận giá trị "gần với 0":

1.3. Hàm xấp xỉ.

m(a, r) =
1

2π

2π

o

log+ | 1

f(reiθ)− a |dθ

(trong đó log+ = max(0, log))

Rõ ràng rằng m(a, r) trở nên "lớn" khi f(z) gần với a.

Kết quả trung tâm của lý thuyết Nevanlinna là hai

"Định lý cơ bản" và quan hệ số khuyết.

1.4.Định lý cơ bản thứ nhất của Nevanlinna. Tồn

tại hàm T (f) sao cho với mọi a ∈ P1 ta có
m(a, r) +N(a, r) = T (r) +O(1)

∈
n(a, r) = �{không điểm của f(z)− a trong {|z| < r}, kể cả bội}

Do T (r) không phụ thuộc a, có thể nói rằng hàm phân

hình nhận mỗi giá trị a ∈ P1 (và những giá trị "gần a")
với một số lần như nhau.

1.5. Định lý cơ bản thứ hai của Nevanlinna. Với

q ∈ N tuỳ ý và các điểm phân biệt ai ∈ P1, i = 1, . . . , q
q

i=1

m(ai, r) < 2T (r) +O(log(rT (r)))

trong đó bất đẳng thức thoả mãn trừ ra trên một tập có

độ đo giới nội.

Hơn nữa, nếu đặt

δ(a) = limr→∞
m(a, r)

T (r)

ta có

a∈P1
δ(a) ≤ 2 (1)

δ(a) được gọi là giá trị khuyết của điểm a và (1) là quan

hệ số khuyết.

Tổng trong quan hệ số khuyết có nghĩa, vì δ(a) = 0 với

hầu hết a (trừ ra trên một tập hợp đếm được).

2.1. Tại sao cần nghiên cứu lý thuyết Nevanlinna trên

trường p-adic?

Trong công trình nổi tiếng "Từ siêu hình đến toán học"

[2], A. Weil đã nói về vai trò của sự tương tự trong toán

học. Để minh họa tư tưởng này, ông phân tích về "siêu

hình" của Hình học Diophantus: đó là sự tương tự giữa

các số đại số và các hàm đại số. Tuy nhiên, sự tương tự

đáng ngạc nhiên giữa lý thuyết độ cao của Weil và Định

lý cơ bản thứ hai của Cartan cho trường hợp siêu phẳng

chỉ được phát hiện bởi P. Vojta sau 50 năm! P. Vojta đã

đưa ra một "từ điển" để phiên dịch những kết quả của

lý thuyết Nevanlinna một chiều sang trường hợp xấp xỉ

Diophantus. Với "từ điển" này, ta có thể xem Định lý

Roth như là một tương tự của Định lý cơ bản thứ hai của

Nevanlinna. Vojta cũng đưa ra một số giả thuyết định

lượng, là mở rộng của định lý Roth lên trường hợp chiều

cao. Có thể nói rằng, P. Vojta đề xuất một "siêu hình"

mới của Hình học Diophantus: lý thuyết Nevanlinna số

học chiều cao.

Mặt khác, theo triết lý của nguyên lý Hasse-Minkowski,

ta hy vọng có một "kết quả số học" nếu ta có nó trong

trường hợp thực, phức, và p-adic với mọi số nguyên tố p.

Như vậy, một cách tự nhiên là cần tìm hiểu tương tự của

lý thuyết Nevanlinna trên trường p-adic.

Lý thuyết Nevanlinna p-adic được xây dựng lần đầu

tiên trong công trình [1] (sau đó trong [3]), và ngày nay

đã trở thành một lý thuyết được phát triển rộng rãi, có

nhiều ứng dụng trong những vấn đề khác nhau.

Trong những mục sau, chúng tôi sẽ trình bày một số

kết quả chính của thuyết Nevanlinna p-adic và một số ứng

dụng của lý thuyết này.

2.2. Hai định lý cơ bản

Giả sử p là số nguyên tố, Qp là trường các số p-adic,
Cp là bổ sung p-adic của bao đóng đại số của Qp. Định
giá trong Qp được chuẩn hoá sao cho |p| = p−1. Ta cũng
sử dụng ký hiệu v(z) cho định giá cộng tính trên Cp, là
thác triển của ordp.

Hàm đếm được định nghĩa hoàn toàn như trong lý

thuyết Nevanlinna phức, tức là với hàm phân hình f , giá

2.�Hai�định� lý� cơ�bản�của� lý� thuyết�Nevanlinna�
trên�trường�không�Acsimet



���������������

Khoa�học�Tự��nhiên

sử n(f,∞, r) ký hiệu số cực điểm trong {|z| ≤ r}, đặt∞ {| | ≤ }

N(f,∞, r) =
r

o
[n(f,∞, t)−n(f,∞, 0)]dt

t
+n(f,∞, 0) log r =

|z|≤r,z �=0
max{0,−ordzf} log r|z| +max{0,−ordof} log r| |≤ �

trong đó ordzf ký hiệu cấp của hàm f tại z, lấy giá trị

âm ứng với các cực điểm. Hàm đếm đối với những giá trị

khác được định nghĩa hoàn toàn tương tự.

Đối với hàm xấp xỉ, chú ý rằng chuẩn | |r là nhân tính
trên tập hợp hàm nguyên, và thác triển được sang các

hàm phân hình. Định nghĩa

m(f,∞, r) = log |f |r
và với a hữu hạn,

m(f, a, r) = log
1

|f − a|r| − |
Nhận xét rằng trong trường hợp p-adic, không cần việc lấy

"trung bình" theo |z| = r, do nguyên lý mô đun cực đại
mạnh, với z đủ tổng quát có |z| = r, ta có |f(z)| = |f |r.
Cuối cùng, cũng như trong trường hợp phức, hàm đặc

trưng được cho bởi

T (f, a, r) = m(f, a, r) +N(f, a, r)

Từ tính chất của đa giác Newton suy ra rằng

log |f |r =
|z|≤r,z �=0

(ordzf) log
r

|z| + (ordof) log r + 0(1)

trong đó số hạng 0(1) phụ thuộc vào độ lớn của hệ số khác

0 đầu tiên trong khai triển Laurent của hàm f tại 0.

Công thức Jensen trong trường hợp p-adic có thể viết

dưới dạng:

m(f,∞, r) +N(f,∞, r) = m(f, 0, r) +N(f, 0, r) + 0(1)
Từ công thức trên, đặt T (f, r) = m(f,∞, r)+N(f,∞, r),
ta có hai Định lý cơ bản trong trường hợp p-adic [3].

Định lý cơ bản thứ nhất Giả sử f là hàm phân hình

khác hằng trên Cp, và a ∈ Cp∪∞ là giá trị tuỳ ý. Khi đó
ta có:

T (f, a, r) = T (f, r) + 0(1)

trong đó 0(1) là đại lượng giới nội khi r →∞.
Định lý cơ bản thứ hai. Giả sử f là hàm phân hình

khác hằng trên Cp, và giả sử a1, a2, . . . , aq là những điểm
khác nhau trên Cp ∪ {∞}. Khi đó, với mọi r ≥ ro > 0

∪ {∞} ≥

(q−2)T (f, r)−
q

j=1

N(f, aj , r)−NRam(f, t) ≤ − log r+0(1)

trong đó

NRam(f, a) = N(f
�, 0, r) + 2N(f,∞, r)−N(f �,∞, r)

đo cấp tăng của rẽ nhánh của hàm f , và 0(1) chỉ phụ

thuộc aj, hàm f , và số ro.

Hệ quả. Giả sử f và a1, a2, . . . , aq như trong phát biểu

của Định lý cơ bản thứ hai. Khi đó, với mọi r ≥ ro

(q − 2)T (f, r) ≤
q

j=1

N1(f, aj, r)− log r + 0(1)

trong đó N1(f, aj, r) ký hiệu hàm đếm sửa đổi, sao cho

mỗi điểm mà f = a chỉ được tính với bội 1, còn 0(1) vẫn

phụ thuộc vào aj, f, ro.

3. Hàm độ cao

Trong trường hợp p-adic, ta có thể sử dụng hàm độ cao.

Chú ý rằng, đa giác Newton thể hiện một trong những sự

khác nhau cơ bản giữa các hàm giải tích p-adic và các

hàm giải tích phức. Cụ thể là, mô đun của một hàm giải

tích p-adic chỉ phụ thuộc vào mô đun của đối số, trừ ra

trên một tập hợp rời rạc các giá trị của mô đun đối số.

Sự kiện này thường giảm nhẹ khó khăn khi chứng minh

những tương tự p-adic cho các kết quả cổ điển. Dưới đây,

chúng tôi sẽ đưa ra định nghĩa về hàm độ cao (xem [4-9]).

Giả sử f(z) là hàm giải tích trên Cp, biểu diễn được
bởi chuỗi luỹ thừa hội tụ:

f(z) =
∞

n=0

anz
n

Với mỗi n vẽ đồ thị Γn biểu diễn v(anz
n) như hàm của

v(z) = t. Đồ thị này là một đường thẳng với hệ số góc n.

Do lim
n→∞{v(an) + nt} = ∞ với mỗi t nên suy ra rằng

với mỗi t tồn tại n sao cho v(an)+nt đạt cực tiểu. Giả sử

h(f, t) ký hiệu biên của giao của mọi nửa mặt phẳng nằm

dưới các đường Γn. Khi đó trong mỗi đoạn hữu hạn [r, s],

tồn tại hữu hạn đường Γn tham gia trong việc thành lập

h(f, t). Như vậy, h(f, t) là một đường gấp khúc. Ta gọi

3.�Hàm�độ�cao



���������������

Khoa�học�Tự�nhiên

đường gấp khúc này là độ cao của hàm f(z). Các điểm t

mà h(f, t) có đỉnh tại đó được gọi là các điểm tới hạn của

f(z). Mỗi đoạn hữu hạn chỉ có thể chứa hữu hạn điểm tới

hạn. Nếu t là một điểm tới hạn, thì v(an) + nt đạt cực

tiểu tại ít nhất hai giá trị của n. Nếu v(z) = t không là

điểm tới hạn thì |f(z)| = p−h(f,t).
Độ cao của hàm f(z) cho thông tin đầy đủ về phân

bố không điểm của hàm f(z). Cụ thể là, hàm f có không

điểm khi v(z) = ti (một điểm tới hạn), đồng thời số không

điểm của f sao cho v(z) = ti bằng hiệu ni+1−ni giữa các
hệ số góc của h(f, t) tại ti−0 và ti+0.

Đối với hàm phân hình f =
φ

ψ
, độ cao của f được định

trong đó

v(ui) = tk for nk−1 < i ≤ nk
(ta lấy uo = 0) và

lim
k→∞
tk = −∞

Chọn dãy ak với tính chất

v(ao) = −n1t1, v(ak+1) = v(ak)+(nk−nk+1)tk+1, (k = 1, 2, . . . ).

Đặt

Φu(z) = 1 +
∞

k=1

akz
nk

Khi đó dãy hội tụ trên z ∈ Cp và xác định hàm giải tích
Φu(z) trên Cp, có số không điểm trong miền {z|v(z) > t}
bằng Nu(t), và

h(Φu, t) =
t

∞
Nu(t)dt

Định lý 3.3. Dãy u = {ui} là dãy nội suy của hàm f(z)
nếu và chỉ nếu

lim
t→∞{h(f, t)− h(Φu, t)} =∞

Nhận xét 3.4. Định lý trên đây là định lý nội suy

đầu tiên áp dụng được cho các hàm giải tích p-adic không

nhất thiết giới nội. Một định lý tương tự đối với hàm giải

tích trong đĩa đơn vị suy ra rằng các L-hàm p-adic kết

hợp với dạng modular được xác định duy nhất bởi các giá

trị trên các đặc trưng Dirichlet [10-12].

Nhận xét 3.5. Ta có thể áp dụng định lý nội suy để

khôi phục hàm phân hình p-adic nếu biết các nghịch ảnh

(kể cả bội) của hai điểm [1].

4. Trường hợp chiều cao

Đối với trường hợp chiều cao, cũng như trong trường

hợp phức, thay cho việc nghiên cứu nghịch ảnh các điểm,

ta cần nghiên cứu nghịch ảnh các divisor với đối chiều 1.

Nguyên nhân là vì trong trường hợp p-adic cũng tồn tại

các miền Fatou [13].

∞

Định lý 3.3. Dãy u = {ui} là dãy nội suy của hàm f(z)

Khái niệm hàm độ cao cũng được định nghĩa đối với

các đường cong chỉnh hình. Giả sử f = (f1, . . . , fn+1) :

Cp → P n(Cp) là một đường cong chỉnh hình p-adic trong

4.�Trường�hợp�chiều�cao

nghĩa bởi h(f, t) = h(φ, t) − h(ψ, t). Ta cũng dùng ký
hiệu

h+(f, t) = −h(f, t)
Khi đó ta có:

Định lý 3.1 ([4, 10]). Giả sử f là hàm phân hình và

giả sử a1, a2, . . . , aq là q điểm phân biệt trong Cp ∪ {∞}.
Khi đó với t đủ nhỏ

(q − 2)h+(f, t) ≤
q

j=1

N1(f, aj, t) + t+ 0(1)

trong đó N1(f, a, t) ký hiệu hàm đếm đã hiệu chỉnh sao

cho mỗi điểm tại đó f = a chỉ được tính với bội 1, và 0(1)

là đại lượng giới nội khi t −→ −∞.
Hàm độ cao cũng được áp dụng vào vấn đề nội suy

(xem [5, 7]). Giả sử u = {u1, u2, . . .} là một dãy điểm
trong Cp. Ta chỉ xét các dãy u mà số các điểm ui thoả
mãn v(ui) ≥ t là hữu hạn với mỗi t. Ta luôn giả thiết
rằng v(ui) ≥ v(ui+1), (i = 1, 2, . . . ).
Định nghĩa 3.2 [4, 10] Dãy u = {ui} được gọi là dãy

nội suy của f nếu dãy đa thức nội suy đối với f trên u

hội tụ tới f . Với mỗi dãy u ta định nghĩa hàm chỉnh hình

Φu như sau. Đặt

Nu(t) = #{ui|v(ui) ≥ t}
Có thể viết dãy u dưới dạng:

u = {u1, u2, . . . , un1, un1+1 . . . , un2, . . . },
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Nhận xét 4.5. Trong trường hợp phức, giả thuyết trên

tương ứng với những trường hợp sau đây:

1. Định lý cơ bản thứ hai của Nevanlinna: n = 1, k =

1, dj = 1, s =∞.
2. Định lý Cartan: ∀n, k = n, dj = 1, s = n.
3. Định lý Nochka (Giả thuyết Cartan): ∀n,∀k ≤ n, s =

k, d = 1.

4. Định lý Eremenko-Sodin: ∀n, k = n,∀dj, s =∞.

5. Quan hệ số khuyết và các bổ đề kiểu Borel

Giả sử H là siêu mặt trong Pn(Cp) sao cho ảnh của f
không được chứa trongH. Ta nói rằng f rẽ nhánh ít nhất

d (d > 0) trên H nếu với mọi z ∈ f−1H bậc của divisor
f ∗H, degzf ∗H ≥ d. Trong trường hợp f−1H = ∅ ta đặt
d =∞.
Định lý 5.1. Giả sử H1, . . . ,Hq là q siêu mặt ở vị trí

trong đó 0(1)là đại lượng giới nội khi t→−∞ và h+(h, t) =trong đó 0(1)là đại lượng giới nội khi t→ −∞ và h+(h, t) =→ −∞
−h(f, t).
Cherry và Ye ([15]) đã mở rộng định lý trên lên trường

hợp chiều cao. Hơn nữa, họ xét cả trường hợp các đường

cong suy biến bằng cách sử dụng trọng số Nochka.

Đối với trường hợp siêu mặt, ta có định lý sau:

Định lý 4.3. Giả sử H1, . . . ,Hq là các siêu mặt bậc d

trong Pn(Cp) ở vị trí tổng quát. Giả sử f là đường cong
chỉnh hình không suy biến. Khi đó

(q − n)h+(f, t) ≤
q

j=1

N(f ◦Hj, t)
d

+ 0(1)

trong đó 0(1) là đại lượng giới nội khi t→ −∞.
Định lý trên đây là một phiên bản p-adic của định lý

Eremenko-Sodin.

Ta kết thúc phần này bằng giả thuyết sau đây.

Đường cong chỉnh hình f được gọi là k-không suy biến

nếu ảnh của f được chứa trong một không gian con tuyến

tính số chiều k và không được chứa trong bất kỳ không

gian con tuyến tính nào với chiều k − 1.
Giả thuyết 4.4. Giả sử H1, . . . ,Hq là các siêu mặt

bậc dj, j = 1, . . . , q trong Pn(Cp) ở vị trí tổng quát. Giả
sử f là đường cong chỉnh hình k-không suy biến. Giả sử s

là số nguyên ≥ k, hoặc s =∞. Khi đó

(q − 2n+ k − 1)h+(f, t) ≤
q

j=1

Ns(Hj ◦ f, t)
dj

+ 0(1)

tổng quát. Giả sử f không suy biến tuyến tính và rẽ nhánh

ít nhất dj trên Hj. Khi đó

q

j=1

(1− n
dj
) < n + 1

Nhận xét 5.2. Trong trường hợp phức, ta có bất đẳng

thức tương tự, nhưng với dấu ≤. Nguyên nhân là vì trong
trường hợp p-adic, số hạng dư trong Định lý cơ bản thứ

hai của Nevanlinna đơn giản hơn. Điều này rất quan trọng

trong nhiều ứng dụng.

Từ định lý trên, có thể chứng minh một dạng sau đây

của bổ đề Borel p-adic:

Định lý 5.3. Giả sử f1, f2, . . . , fn (n ≥ 3) là các hàm
chỉnh hình p-adic không có không điểm chung trong Cp

→
đó các hàm fi không có không điểm chung.

Định nghĩa 4.1. Độ cao của đường cong chỉnh hình f

được định nghĩa bởi

h(f, t) = min
1≤j≤n+1

h(fj, t)

trong đó h(fj, t) là độ cao của hàm chỉnh hình p-adic

trong Cp.
Chú ý rằng độ cao của một đường cong xác định sai

khác một đại lượng giới nội.

Định lý sau đây là một tương tự p-adic của Định lý cơ

bản thứ hai cho trường hợp đường cong chỉnh hình.

Định lý 4.2 [14] Giả sử H1, . . . ,Hq là q siêu phẳng

ở vị trí tổng quát, và giả sử f là đường cong chỉnh hình

không suy biến trong Pn(Cp). Khi đó ta có

(q−n− 1)h+(f, t) ≤
q

j=1

Nn(f.Hj, t)+
n(n + 1)

2
.t+0(1)

5.�Quan�hệ�số�khuyết�và�các�bổ�đề�kiểu�Borel
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Trong trường hợp phức, bổ đề Borel thường được sử dụng

để thiết lập tính hyperbolic của các không gian phức. Dưới

đây chúng tôi sẽ chỉ ra một số ứng dụng của bổ đề Borel

p-adic trong việc nghiên cứu các siêu mặt hyperbolic p-

adic.

Mặc dù tập hợp các siêu mặt hyperbolic bậc d đủ lớn

so với n được giả thuyết là trù mật Zariski, không dễ xây

dựng ví dụ về siêu mặt hyperbolic.

Ví dụ đầu tiên về siêu mặt hyperbolic nhẵn bậc chẵn

d ≥ 50 được cho bởi R. Brody và M. Green. Ta sẽ xem

∈ ◦ ≡
Với phân hoạch {1, . . . , s} như trên, đặt: bjk = Mdj ◦

f(z) /Mdk ◦ f(z). Khi đó hệ phương trình tuyến tính
AY = B

trong đó A là ma trận {αj�−αk�}, Y là ma trận cột {yj},
B = {logbjk}, có nghiệm {logf0, ..., logfn}.
Như vậy ma trận A thoả mãn một số điều kiện về hạng.

Mặt khác, do điều kiện, iii) tồn tại (A0, ..., An) ∈ Pn sao
cho (ci) ∈ (C∗p)s thoả mãn phương trình sau

sao cho f1 + f2 + ...+ fn = 0

Khi đó các hàm f1, . . . , fn−1 là phụ thuộc tuyến tính
nếu với j = 1, . . . , n, mỗi không điểm của fj có bội ít

nhất là dj và điều kiện sau đây thoả mãn:

n

j=1

1

dj
≤ 1

n− 2

Dùng quan hệ số khuyết, ta có thể thiết lập một số mở

rộng của bổ đề Borel.

Giả sử

Mj = z
αj,1
1 . . . z

αj,n+1
n+1 , 1 ≤ j ≤ s

là các đơn thức phân biệt bậc l với số mũ không âm. Giả

sử X là siêu mặt bậc dl của Pn(Cp) xác định bởi

X : c1M
d
1 + . . . csM

d
s = 0

trong đó cj ∈ C∗p là những hằng số khác 0.
Định lý 5.4. (Tương tự p-adic của định lý Masuda-

Noguchi).

Giả sử f = (f1, .., fn+1) : Cp −→ X là đường cong
chỉnh hình khác hằng sao cho mọi fj �≡ 0. Giả sử

d ≥ s(s− 2)

Khi đó tồn tại một phân hoạch các chỉ số {1, 2, ..., s} =
∪Iγ, sao cho
i) Mỗi Iγ chứa ít nhất hai chỉ số,

ii) Các thương M dj ◦ f(z) và Mkj ◦ f(z) là hằng số với
mọi j, k ∈ Iγ
iii)

j∈Iγ
cjM

d
j ◦ f(z) ≡ 0 với mọi γ.

Hệ quả 5.5. Với d ≥ 3 không tồn tại nghiệm của
phương trình sau đây trong tập hợp các hàm chỉnh hình

p-adic khác hằng không có không điểm chung:

xd + yd = zd

6. Không gian hyperbolic p-adic
6.�Không�gian�hyperbolic�p-adic

Một không gian phức được gọi là không gian hyperbolic

nếu mọi đường cong chỉnh hình trong đó đều là hằng.

làm thế nào dùng bổ đề Borel p-adic để xây dựng siêu

mặt hyperbolic p-adic (xem [16]).

Giả sử X là siêu mặt xác định như trên, và giả sử

d ≥ s(s− 2). Giả sử X không hyperbolic, và
f = (f1, ..., fn+1) : Cp −→ X

là đường cong chỉnh hình khác hằng trong X. Ta chỉ ra

rằng {cj} thuộc vào một tập hợp đại số của (C∗p)s. Có thể
giả thiết mọi fj �≡ 0.
Do Định lý 5.3, tồn tại phân hoạch các chỉ số {1, . . . , s} =

∪Iξ sao cho
i) Mỗi Iξ chứa ít nhất 2 chỉ số.

ii) ThươngMdj ◦f(z) vàMdk ◦f(z) là hằng số với j, k ∈
I.,

iii) j∈Iξ cjM
d
j ◦ f(z) ≡ 0 với mọi ξ.

Iξ
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o · · ·Aαinn = 0

Do đó, (ci) ∈ (C∗p)s thuộc vào hình chiếu Σ ⊂ (C∗p)s của
một tập con đại số trong (C∗p)s×Pn. Nếu lấy (ci) �∈ Σ, ta
có một siêu mặt hyperbolic.

Đối với trường hợp các mặt trong P3 ta có thể sử dụng
phương pháp sau. Trước tiên lấy mặt X ⊂ P3 sao cho
mỗi đường cong chỉnh hình trong X là suy biến. Điều đó

có nghĩa là ảnh của một ánh xạ chỉnh hình từ Cp vào X,
f : Cp −→ X, được chứa trong tập đại số thực sự của X.
Nếu ta chứng minh được rằng ảnh của f(Cp) được chứa
trong một đường cong có giống ít nhất bằng 1, thì f là

ánh xạ hằng (Định lý Berkovich).

7. Tập xác định duy nhất các hàm phân hình

Với mỗi hàm phân hình f trên C và một tập con S ⊂
C ∪ {∞} định nghĩa

Ef(S) = ∪a∈S{(m, z)|f(z) = a tính cả bội m}

và

Ēf(S) = ∪a∈S{z|f(z) = a không tính bội }

Tập con S ⊂ C ∪ {∞} được gọi là tập xác định duy nhất
các hàm phân hình (URSM) nếu với mọi cặp hàm phân

hình khác hằng f và g trên C, điều kiện Ef(S) = Eg(S)
kéo theo f = g. Tập con S ⊂ C ∪ {∞} được gọi là tập
xác định duy nhất đối với các hàm nguyên (URSE) nếu

với cặp hàm nguyên khác hằng bất kỳ f và g trên C, điều
kiện Ef(S) = Eg(S) kéo theo f = g. Các định lý cổ điển

của Nevanlinna chỉ ra rằng f = g nếu Ēf(aj) = Ēg(aj)

với những giá trị phân biệt a1, . . . , a5, và f là một biến

đổi Möbius của g nếu Ef(aj) = Eg(aj) với những giá trị

phân biệt a1, . . . , a4. Gross và Yang [17] chỉ ra rằng

S = {z ∈ C|z + ez = 0}

là một URSE. Các URSEvà URSM với hữu hạn phần tử

đã được xây dựng bởi Yi, Li và Yang, Mues và Reinders

| }

là một URSE. Các URSEvà URSM với hữu hạn phần tử

Frank và Reinders. Li và Yang đưa ra khái niệm

λM = inf{#S|S là URSM}
λE = inf{#S|S là URSE}

trong đó #S là lực lượng của tập S. Cận dưới tốt nhất

được biết cho đến nay là

5 ≤ λE ≤ 7, 6 ≤ λM ≤ 11
Đối với những lớp hàm mà mọi không điểm và cực điểm

của chúng đều có bội ≥ 2, ta có định lý sau [18]:
Định lý 7.1. Tồn tại tập hợp S gồm 7 điểm sao cho đối

với hai hàm phân hình f và g mà mọi không điểm và cực

điểm của chúng đều có bội ≥ 2, điều kiện Ef (S) = Eg(S)
kéo theo f = g.

Đối với các hàm nguyên hoặc hàm phân hình p-adic f

trên Cp, ta có những định nghĩa tương tự của Ef(S) và
Ēf(S) đối với tập con S ⊂ Cp∪{∞} và khái niệm λM và
λE. Sử dụng lý thuyết Nevanlinna p-adic ta có thể thiết

lập các định lý sau:

Định lý 7.2 [19, 20]. Giả sử S = {a1, a2, a3, a4} là tập
hợp gồm 4 điểm đủ tổng quát trong Cp. Khi đó đối với các
hàm phân hình p-adic f và g, điều kiện Ef(S) = Eg(S)

và Ef(∞) = Eg(∞) kéo theo f ≡ g.
Gần đây, vấn đề tập xác định duy nhất được xem xét

cho trường hợp đa thức vi phân của các hàm phân hình

(xem [21-29]).

7.�Tập�xác�định�duy�nhất�các�hàm�phân�hình
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