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Mở đầu

Hiện nay, ứng dụng công nghệ lưu trữ lớn, khai phá dữ 
liệu trong lĩnh vực y tế để chẩn đoán, phòng ngừa và điều 
trị bệnh nhằm can thiệp nâng cao sức khỏe con người là 
hướng nghiên cứu có nhu cầu thực tiễn, được quan tâm 
tích cực bởi cộng đồng các nhà nghiên cứu. Tại Việt Nam, 
các thiết bị y sinh (thiết bị đo thông số tim mạch, huyết 
áp…) được sử dụng rộng rãi để giám sát người bệnh theo 
thời gian thực. Các thiết bị này đưa ra các thông số đo có 
tính liên tục, cập nhật theo chu kỳ 1 lần/s. Hiện nay, nguồn 
dữ liệu này chưa được lưu trữ tập trung vì những thách 
thức liên quan đến độ lớn của dữ liệu đến từ hàng triệu 
thiết bị đo, liên tục và phân tán rộng về mặt địa lý. 

Bên cạnh nguồn dữ liệu từ các thiết bị y sinh, hiện 
trạng các hồ sơ bệnh án cũng đang được lưu trữ một cách 
rải rác, không có sự chia sẻ. Do đó, các bác sỹ, trung tâm 
y tế khác nhau gặp nhiều khó khăn để tìm kiếm thông tin 
lịch sử bệnh tật của bệnh nhân để đưa ra phác đồ điều trị 
hợp lý. Vì vậy, việc lưu trữ các bệnh án tập trung cũng là 
một nhu cầu cấp thiết để phục vụ công tác phân tích, chẩn 
đoán.

Theo Ercan và Lane (2014) [1], trong những hệ thống 
bệnh án điện tử (Electronic Health Record - EHR) truyền 
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Abstract:

At present, applications of large storage technology and 
data mining in the medical field to diagnose, prevent, 
and treat diseases with the purpose of improving 
human health are preferred the practical researches. 
In this study, we would like to introduce HealthDL: 
A system for collecting and storing medical data. 
HealthDL has a dispersal architecture, is built from 
open components for large data, and continuously 
increases in real time. An optimal system retrieves 
database from biomedical devices and medical record 
database coming from millions of geographically 
dispersed devices. Tests and evaluations on the real 
system using standard assessment tools with simulated 
database show good results.
Keywords: Big data, dispersed database, epidemiology, 
real time.
Classification number: 2.2
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thống, data được lưu trữ dưới dạng bản ghi trong bảng cơ 
sở dữ liệu quan hệ. Nghiên cứu cũng chỉ ra rằng, sự mở 
rộng ngày càng tăng của lượng thông tin trong các dịch vụ 
chăm sóc sức khỏe đã dẫn đến một nút thắt nghẽn cổ chai 
trong việc lưu trữ, truy xuất và đặt ra những thách thức về 
tính sẵn sàng cao đối với việc sử dụng mô hình cơ sở dữ 
liệu truyền thống. Hơn nữa trong nghiên cứu của Andreu-
Perez và cs (2015) [2], các tác giả đã chỉ ra rằng sự đa 
dạng của dữ liệu y tế ngày càng tăng với sự phát triển của 
công nghệ, dữ liệu từ sensor, mobile, các dữ liệu ảnh... đòi 
hỏi phải nghiên cứu tìm kiếm một cách thức tổ chức lưu 
trữ dữ liệu y tế phù hợp. Nghiên cứu  của Ercan và Lane 
(2014), Dobre và Xhafa (2015) [1, 3] đã chỉ ra những yêu 
cầu thiết yếu của EHR và đề xuất sử dụng mô hình dữ liệu 
phi quan hệ (NoSQL [4]) cho bài toán lưu trữ và xử lý 
dữ liệu lớn về y tế. Tuy nhiên những nghiên cứu này chỉ 
đưa ra gợi ý hướng tiếp cận chung, không đưa ra thiết kế 
tổng thể về thu thập, lưu trữ EHR, không thử nghiệm, cài 
đặt và đánh giá hiệu năng của hệ thống. Nghiên cứu cũng 
thống nhất rằng cơ sở dữ liệu khoá - giá trị (một dạng của 
NoSQL) có thể là một giải pháp tốt cho dữ liệu đơn giản, 
truy xuất thông qua khoá, các giá trị là đồng nhất về cấu 
trúc, không có cập nhật hay truy xuất dựa trên cấu trúc của 
giá trị dữ liệu. Ví dụ như thông số an sinh xã hội của khách 
hàng, thông tin số bảo hiểm y tế. Cơ sở dữ liệu hướng văn 
bản (một dạng của NoSQL) là một giải pháp cho việc lưu 
trữ hồ sơ bệnh án y tế, bao gồm hồ sơ bệnh nhân, báo cáo 
nghiên cứu, báo cáo phòng thí nghiệm, hồ sơ bệnh viện, 
các báo cáo bản chụp X quang, bản chụp cắt lớp… Các 
tác giả Ercan và Lane (2014) [1] đề xuất sử dụng Dynamo 
Amazon [5], một dịch vụ lưu trữ dữ liệu điện toán đám 
mây của Amazon để lưu trữ luồng dữ liệu liên tục từ các 
thiết bị y sinh. Kiến trúc Dynamo Amazon dựa trên hàm 
băm nhất quán cho cơ chế mở rộng, sử dụng nút ảo để 
phân tán dữ liệu đồng đều trên các nút máy chủ vật lý, 
sử dụng vector clock [6] để giải quyết xung đột giữa các 
phiên bản dữ liệu sau quá trình ghi tương tranh đồng thời. 

HealthDL là một hệ thống tổng thể, ngoài thành phần 
lưu trữ dữ liệu theo mô hình NoSQL như các nghiên cứu 
liên quan, HealthDL tích hợp hệ thống hàng chờ thông 
điệp phân tán để thu thập luồng dữ liệu đến từ các thiết bị 

y sinh phân tán về mặt địa lý. HealthDL được xây dựng 
và triển khai thực nghiệm, đánh giá hiệu năng lưu trữ trên 
môi trường phân tán.

Trong nghiên cứu này, chúng tôi giới thiệu HealthDL 
- Một hệ thống phân tán, thu thập và lưu trữ dữ liệu y tế 
tối ưu cho dữ liệu nhận về từ các thiết bị y sinh và dữ liệu 
thông tin lịch sử bệnh án. Xây dựng HealthDL là một bài 
toán nghiên cứu về dữ liệu lớn, gia tăng liên tục theo thời 
gian thực và đến từ hàng triệu thiết bị phân tán về mặt địa 
lý. HealthDL cho phép thống kê, tìm kiếm và phân tích dữ 
liệu. HealthDL hỗ trợ công việc của một chuyên viên dịch 
tễ học trong công tác thu thập, phân tích dữ liệu và phỏng 
đoán bệnh.

Đặc trưng dữ liệu y tế 

Dữ liệu y tế trong nghiên cứu này được phân thành 2 
nhóm: Dữ liệu thu thập từ các thiết bị y sinh và dữ liệu 
thông tin bệnh án. Phần dưới đây mô tả đặc trưng nguồn 
dữ liệu đầu vào cho hệ thống HealthDL.

Dữ liệu y sinh

Các thiết bị y sinh như máy đo nhịp tim, huyết áp gửi 
thông số đo khoảng 540 bytes/s. Trung bình mỗi bệnh 
nhân đo 2 tiếng/ngày, như vậy số lượng gói dữ liệu sinh 
ra trong 1 tháng ứng với 1.000 bệnh nhân là 216.000.000 
gói dữ liệu. Mỗi gói trung bình 540 bytes, xét trên 1.000 
bệnh nhân với các máy đo độc lập, lượng dữ liệu thu thập 
được tương ứng là 116 Gigabytes về thông số bệnh nhân 
trong một tháng.

Dữ liệu bệnh án 

Xét dữ liệu bệnh án tìm hiểu trên 4 nhóm bệnh, gồm: 
Bệnh tăng huyết áp (kích thước bản ghi 800-1.000 bytes); 
bệnh lao phổi (kích thước bản ghi 400-600 bytes); bệnh 
hen phế quản (kích thước bản ghi 500-700 bytes); bệnh 
đái tháo đường (kích thước bản ghi 800-1.000 bytes). Đặc 
điểm của dữ liệu bệnh án là cấu trúc dữ liệu rất linh hoạt. 
Đối với bệnh nhân đái tháo đường, một văn bản bệnh án sẽ 
có khoảng 150 trường dữ liệu riêng biệt với cấu trúc chia 
nhỏ từ 4 đến 5 tầng (bảng 1). Đối với bệnh nhân tăng huyết 
áp, một văn bản bệnh án sẽ có khoảng 75 trường dữ liệu 
riêng biệt với cấu trúc chia nhỏ đến 4-5 tầng.
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Bảng 1. Một phần bệnh án đái tháo đường (ĐTĐ).

Như vậy có thể thấy, nguồn dữ liệu y tế trong hệ thống 
HealthDL mang đặc trưng của dữ liệu lớn. Cụ thể:

Kích thước lớn: Xét trên 1.000 bệnh nhân với các máy 
đo độc lập, lượng dữ liệu thu thập được tương ứng là 116 
Gigabytes về thông số bệnh nhân trong một tháng. Như 
vậy, khi số bệnh nhân tăng lên và thời gian đo kéo dài, 
lượng dữ liệu cần thu thập là vô cùng lớn.

Tốc độ lớn: Các thiết bị y sinh tạo ra dữ liệu liên tục với 
tốc độ cao (tần suất 1 bản ghi dữ liệu/s) đòi hỏi hệ thống 
lưu trữ cần đảm bảo tính sẵn sàng cao, đáp ứng tương 
tranh đồng thời giữa các tiến trình ghi dữ liệu và các tiến 
trình đọc, xử lý dữ liệu theo thời gian thực. 

Tính đa dạng: Các bệnh án là dữ liệu bán cấu trúc có 
lược đồ không đồng nhất. Việc lưu trữ dữ liệu này đòi hỏi 
hệ quản trị cơ sở dữ liệu phải có lược đồ dữ liệu linh hoạt, 
điều mà các hệ quản trị cơ sở dữ liệu quan hệ truyền thống 
không đáp ứng được.

Mang lại giá trị lớn: Dữ liệu y tế được lưu trữ và khai 
thác mang lại hiệu quả cao trong việc chẩn đoán, điều trị 
bệnh, góp phần cải thiện chất lượng khám chữa bệnh và 
giảm chi phí xét nghiệm. 

Mô hình hệ thống

Chúng tôi xây dựng HealthDL là hệ thống có kiến trúc 
tổng thể chia làm 4 phần chính, gồm: 1) Khối các thiết bị 
y sinh đo các thông số cần thiết từ người bệnh; 2) Khối 
tiếp nhận và chuyển tiếp dữ liệu; 3) Khối lưu trữ dữ liệu 

từ các thiết bị y sinh; 4) Khối lưu trữ bệnh án. So với các 
mô hình truyền thống, HealthDL xây dựng trên các thành 
phần phân tán, có tính khả mở, tối ưu hoá cho luồng dữ 
liệu lớn.

Đầu vào của hệ thống có 2 luồng chính: Dữ liệu đầu 
vào từ các thiết bị y sinh (dữ liệu này sẽ được đưa qua một 
hàng chờ rồi lưu trữ vào cơ sở dữ liệu); dữ liệu đầu vào 
bệnh án, lưu trữ vào cơ sở dữ liệu chuyên biệt tối ưu hoá 
cho dữ liệu bệnh án có cấu trúc linh hoạt.

Mô hình tổng thể của hệ thống được mô tả như hình 1. 
Trong bài báo này, chúng tôi không trình bày về các thiết 
bị y sinh mà chỉ đi vào các thành phần chính của 3 khối 
còn lại với nhiệm vụ thu thập và tổ chức lưu trữ dữ liệu 
phân tán. Mục tiêu của hệ thống là đảm bảo hiệu năng, 
khả năng mở rộng cao với dữ liệu vào theo luồng và dữ 
liệu có cấu trúc linh hoạt, nguồn dữ liệu phân tán rộng về 
mặt địa lý. 

Hình 1. Thiết kế tổng quan HealthDL.

Công nghệ đề xuất

Apache Kafka cho hàng chờ thông điệp

Apache Kafka [7] là hệ thống truyền thông điệp phân 
tán, độ tin cậy cao, dễ dàng mở rộng và có thông lượng cao. 
Apache Kafka cung cấp cơ chế offset (có thể hiểu tương tự 
như chỉ số của một mảng) để lấy thông điệp một cách linh 
hoạt, cho phép các ứng dụng xử lý có thể xử lý lại dữ liệu 
nếu việc xử lý trước đó bị lỗi. Ngoài ra, cơ chế “đăng ký” 
theo dõi cho phép việc lấy thông điệp ra gần như tức thời 
ngay khi dữ liệu đi vào hàng chờ. Apache Kafka được thiết 
kế hỗ trợ tốt cho việc thu thập dữ liệu theo thời gian thực. 
Với các tính chất này, Apache Kafka là lựa chọn phù hợp 
cho khối thu thập dữ liệu trong HealthDL.

Apache Kafka là hệ thống lưu trữ thông điệp được phát 
triển tại LinkedIn với những đặc điểm chính sau: 

Tốc độ nhanh: Với một máy đơn cài đặt Apache Kafka 
có thể xử lý số lượng dữ liệu từ việc đọc và ghi lên tới 
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hàng trăm megabytes/s từ hàng ngàn máy khách.

Khả năng mở rộng: Apache Kafka được thiết kế cho 
phép dễ dàng được mở rộng và trong suốt với người dùng 
(nghĩa là không có thời gian chết - ngừng hoạt động trong 
khi thêm một nút mới vào cụm). Khi Apache Kafka chạy 
trên một cụm, luồng dữ liệu sẽ được phân chia và được 
vận chuyển tới các nút trong cụm, do đó cho phép trung 
chuyển các dữ liệu có khối lượng lớn hơn nhiều so với sức 
chứa của một máy đơn.

Độ tin cậy: Dữ liệu vào hàng chờ sẽ được lưu trữ trên 
ổ đĩa và được sao chép tới các nút khác trong cụm để ngăn 
ngừa việc mất dữ liệu, như vậy Apache Kafka đảm bảo 
tính chịu lỗi cao.  

Khi so sánh với các hệ thống truyền thông điệp 
truyền thống lâu đời như RabbitMQ [8] cho thấy Apache 
Kafka có lượng dữ liệu đọc và ghi cao hơn nhiều so với 
RabbitMQ. Ngược lại, lượng tài nguyên mà Apache Kafka 
chiếm dụng lại ít hơn nhiều. Do đó, Apache Kafka thích 
hợp hơn cho các ứng dụng xử lý theo thời gian thực với 
lượng dữ liệu lớn.

Một số khái niệm cần nắm rõ khi vận hành Apache 
Kafka: 1) Topic: Là “chủ đề”, thông thường các dữ liệu 
liên quan hoặc tương tự được nhóm trong các chủ đề. Mỗi 
chủ đề có thể được coi là một nguồn dữ liệu riêng biệt; 2) 
Broker: Apache Kafka chạy trên một cụm bao gồm một 
hoặc nhiều máy (nút), mỗi nút được gọi là một broker; 3) 
Partition: Mỗi topic sẽ được phân chia thành nhiều phân 
mảnh (partition), các partition sẽ là đơn vị cho phép sao 
lưu để phục hồi đến các broker khác; 4) Producer: Thành 
phần sinh dữ liệu, ghi dữ liệu tới broker; 5) Consumer: 
Thành phần “tiêu thụ” dữ liệu, đọc dữ liệu từ các broker.

Hình 2. Mô hình truyền thông điệp phân tán Apache 
Kafka.

Hình 2 mô tả kiến trúc của Apache Kafka khi chạy trên 
một cụm với 3 broker, với một topic tên là MCL được chia 
thành 3 partition, mỗi partition sẽ có một bản sao chép ở 
một broker khác để phục vụ cơ chế sao lưu, khắc phục lỗi. 

Mỗi partition sẽ có 1 broker làm vai trò trưởng nhóm 
(leader), những broker còn lại có lưu trữ partition đó được 
gọi là nút theo dõi (follower), chỉ có nhiệm vụ sao lưu 
dữ liệu. Mỗi partition được cấu hình tham số nhân bản 
(replication factor). Trong hình 2, replication factor = 2, 
nghĩa là mỗi partition sẽ được lưu trữ trên 2 broker.

Zookeeper [9] là thành phần cung cấp các dịch vụ lõi 
cho các hệ thống phân tán như: Dịch vụ quản lý cấu hình 
hệ thống, bầu trưởng nhóm (leader election), định danh 
(naming). Zookeeper được Apache Kafka bầu tự động 
leader cho các partition, quản lý danh sách các nút máy 
chủ đang hoạt động, quản lý danh sách các topic. 

Cơ sở dữ liệu Cassandra cho lưu trữ dữ liệu từ thiết 
bị y sinh 

Cassandra [10] là một cơ sở dữ liệu hướng cột, phân 
tán (một mô hình dữ liệu NoSQL) có khả năng mở rộng 
cao (highly scalable), được thiết kế để có thể quản lý một 
lượng rất lớn dữ liệu có cấu trúc. Cassandra đảm bảo tính 
sẵn sàng cao với thiết kế có khả năng chịu lỗi, các nút máy 
chủ trong cụm Cassandra là đồng nhất theo thiết kế ngang 
hàng (peer-to-peer [11]), không có bất cứ thành phần nào 
trong hệ thống là điểm hỏng thắt cổ chai (bottle-neck). 
Cassandra có một số đặc điểm chính sau:

Tính khả mở và có thể co dãn được: Cassandra có tính 
khả mở cao, nó cho phép thêm vào hệ thống các máy chủ 
để đáp ứng với nhu cầu tải từ phía ứng dụng, đồng thời 
cũng cho phép rút bớt ra, tháo khỏi hệ thống các máy chủ 
để giảm điện năng tiêu thụ, thay thế phục hồi, sửa lỗi mà 
không phải tạm dừng và khởi động lại hệ thống. 

Kiến trúc luôn sẵn sàng: Cassandra không có điểm 
hỏng hóc đơn lẻ, có cơ chế cho phép hệ thống hoạt động 
liên tục, đáp ứng các ứng dụng thương mại quan trọng mà 
không chấp nhận hỏng hóc. 

Mô hình dữ liệu linh hoạt: Cassandra là một hệ cơ sở 
dữ liệu hướng cột với mô hình dữ liệu linh hoạt cho phép 
lưu trữ các dữ liệu có cấu trúc, bán cấu trúc và phi cấu trúc 
(hình 3). Cassandra có thể tiếp nhận dữ liệu với cấu trúc 
động mà không cần định nghĩa trước lược đồ dữ liệu như 
trong cơ sở dữ liệu quan hệ. 
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Hình 3. Mô hình dữ liệu hướng cột của Cassandra (Row 
key 1: Bản ghi dữ liệu với khoá là “key 1”; Column 1: 
Định nghĩa thuộc tính của cột thứ nhất; Value 1: Giá trị 
của thuộc tính thứ nhất tương ứng với mỗi bản ghi dữ liệu).

Dễ dàng phân tán dữ liệu: Cassandra thiết kế theo mô 
hình phân tán dữ liệu của Dynamo Amazon [5] sử dụng 
hàm băm nhất quán (consistent-hashing [12]) để phân tán 
dữ liệu. Điều này cho phép tối ưu quá trình di chuyển dữ 
liệu khi cấu hình hệ thống thay đổi. Các nút máy chủ thêm 
vào hay rút ra không làm ảnh hưởng đến việc phân bố lại 
toàn bộ không gian dữ liệu. 

Cho phép ghi dữ liệu nhanh, thông lượng lớn: 
Cassandra mặc dù được thiết kế chạy trên các máy tính 
phổ thông có cấu hình thấp nhưng vẫn cho phép đáp ứng 
hiệu năng cao với các thao tác đọc, ghi dữ liệu thông lượng 
lớn, có thể lưu trữ hàng trăm terabyte dữ liệu.

Thiết kế của Cassandra không có điểm chết tập trung 
nào. Cassandra có thiết kế dựa trên kiến trúc mạng ngang 
hàng, tất cả các nút máy chủ trong hệ thống đều có vai 
trò như nhau và không có nút máy chủ nào đóng vai trò 
là máy chủ trung tâm mà việc hỏng hóc của máy chủ này 
có thể kéo theo đánh sập hoàn toàn hệ thống như các 
kiến trúc chủ - khách truyền thống. Các nút máy chủ của 
Cassandra là độc lập. Mỗi nút đều có thể xử lý các thao 
tác ghi và đọc dữ liệu, không phân biệt là dữ liệu được lưu 
trữ một cách vật lý trên máy chủ nào trong hệ thống. Khi 
một nút trong hệ thống bị hỏng hóc và dừng hoạt động, 
các thao tác đọc ghi dữ liệu có thể được xử lý bởi các nút 
khác trong hệ thống. Quá trình này hoàn toàn trong suốt 
với ứng dụng, cho phép ẩn đi hỏng hóc của hệ thống đối 
với các ứng dụng đó. 

Trong Cassandra, mỗi đối tượng dữ liệu có thể được 
nhân bản và lưu giữ trên nhiều máy chủ. Nếu một trong các 
máy chủ lưu một phiên bản dữ liệu bị lỗi hoặc không phải 
là phiên bản được cập nhật dữ liệu mới nhất, Cassandra có 
cơ chế đồng bộ để luôn đảm báo các thao tác đọc sẽ luôn 
trả về dữ liệu mới nhất. Cơ chế này được thực thi trong 
quá trình đọc dữ liệu (read repair) thay vì đồng bộ ngay 
trong thao tác ghi dữ liệu, điều này cho phép tăng hiệu 

năng đối với thao tác ghi dữ liệu.

Cassandra sử dụng cơ chế hàm băm nhất quán phân 
tán (distributed consistent hashing [12]) tổ chức các nút 
máy chủ thành cụm theo định dạng vòng tròn và dữ liệu 
được phân tán theo vòng tròn này theo hàm băm nhất quán 
(hình 4). 

Hình 4. Bảng băm nhất quán biểu diễn dưới dạng vòng 
tròn địa chỉ.

Cơ sở dữ liệu MongoDB để lưu trữ dữ liệu bệnh án

MongoDB [13] là cơ sở dữ liệu hướng văn bản, dưới 
đây là các khái niệm khi làm việc với MongoDB:

Document: Document hay văn bản là đơn vị dữ liệu 
trong MongoDB. Document có cấu trúc tương tự như kiểu 
dữ liệu JSON [14], bao gồm các cặp khóa - giá trị, các giá 
trị có thể bao hàm các trường khoá - giá trị con. Document 
có thể hiểu giống như các bản ghi dữ liệu trong cơ sở 
dữ liệu quan hệ, tuy nhiên sự khác biệt là các cặp khoá - 
giá trị trong các văn bản có thể không giống nhau ở mỗi 
document. Do vậy, các document là linh hoạt về mặt cấu 
trúc. Mỗi văn bản có một định danh id là duy nhất trong 
mỗi collection. 

Collection: Collection là nhóm các tài liệu (document), 
tương đương với một bảng (table) trong cơ sở dữ liệu quan 
hệ. Các collection không có ràng buộc quan hệ tham chiếu 
lẫn nhau như các bảng trong hệ quản trị cơ sở dữ liệu quan 
hệ.

Database: Database là cơ sở dữ liệu, mỗi database 
gồm nhiều collection. Một máy chủ MongoDB có thể tạo 
nhiều cơ sở dữ liệu.

Các tính năng quan trọng của MongoDB:

Mô hình dữ liệu linh hoạt: Mô hình dữ liệu hướng văn 
bản của MongoDB cho phép dễ dàng lưu trữ và kết hợp dữ 
liệu có cấu trúc động mà không làm giảm đi việc kiểm soát 
ràng buộc về kiểu, miền giá trị của dữ liệu.
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Tính khả mở cao, cho phép triển khai trên nhiều trung 
tâm dữ liệu: MongoDB có thể mở rộng trên một trung tâm 
dữ liệu hoặc triển khai phân tán trên nhiều trung tâm dữ 
liệu phân tán về mặt địa lý.

Tính sẵn sàng cao: Người quản trị hệ thống có thể dễ 
dàng tăng hoặc giảm số lượng máy chủ tham gia vào hệ 
cơ sở dữ liệu ở bất cứ thời điểm nào, không cần phải tạm 
dừng và khởi động lại hệ thống.

Nhiều tính năng tích hợp đi kèm hệ sinh thái sử dụng 
MongoDB: Các tính năng phân tích dữ liệu, trình diễn dữ 
liệu, đánh chỉ mục, xử lý dữ liệu đồ thị, dữ liệu không gian 
đều có thể dễ dàng tích hợp với cơ sở dữ liệu MongoDB 
thông qua các trình điều khiển kết nối chuẩn hoá và được 
hỗ trợ mạnh mẽ. 

Nhân bản: Nhân bản là một tính năng vô cùng quan 
trọng của MongoDB và được khuyến cáo sử dụng khi cài 
đặt MongoDB cho môi trường thực tế (ứng dụng thực, dữ 
liệu thực). Kỹ thuật nhân bản tức là sao một đối tượng dữ 
liệu ra một nhóm các máy chủ khác nhau. Trong nhóm các 
máy chủ này sẽ có một máy chủ là máy chủ nhân bản chính 
và các máy còn lại là máy chủ nhân bản thứ cấp (phụ). 
Máy chủ nhân bản chính đóng vai trò là tổng quản, nơi mà 
mọi thao tác ghi, cập nhật đối tượng dữ liệu cần phải thông 
qua máy chủ đó. Các máy chủ thứ cấp có thể được sử dụng 
cho việc đọc dữ liệu để cân bằng tải. MongoDB có chế độ 
chuyển đổi dự phòng (failover) tự động nếu máy chủ nhân 
bản chính bị lỗi thì một trong các máy chủ thứ cấp sẽ được 
bầu làm máy chủ chính thay thế để đảm bảo các thao tác 
ghi dữ liệu luôn được thực thi thành công (hình 5). 

Hình 5. Nhân bản trong MongoDB (Client Application: 
Ứng dụng phía người dùng; Writes: Tác vụ ghi dữ liệu; 
Reads: Tác vụ đọc dữ liệu; Primary: Máy chủ nhân bản 
chính; Secondary: Máy chủ nhân bản thứ cấp; Replication: 
Quá trình nhân bản dữ liệu).

Sharding: Khi kích thước của dữ liệu gia tăng, một 
máy tính đơn lẻ không thể đủ để lưu dữ liệu cũng như 
cung cấp các xử lý đọc và ghi thông thường. Sharding là 
một kỹ thuật cho phép các văn bản trong MongoDB được 
phân tán ra trên nhiều máy chủ. Việc phân tán dữ liệu này 
có ý nghĩa quan trọng góp phần mở rộng khả năng lưu trữ 
và xử lý của hệ thống, đồng thời tăng khả năng chịu lỗi. 
Song song với việc tự động hoá phân tán dữ liệu, nếu một 
máy chủ dữ liệu nào đó bị gặp lỗi thì hệ thống có cơ chế 
tự động định tuyến lại các thao tác đọc ghi trên máy chủ bị 
lỗi qua các máy chủ khác. Hình 6 giải thích việc collection 
A được chia ra ở 2 shard A và B trong khi colllection B chỉ 
nằm ở 1 shard A.

Hình 6. Kỹ thuật phân mảnh dữ liệu sharding trong 
MongoDB (Shard: Một khối lưu trữ dữ liệu độc lập; 
Collection: Tập hợp những văn bản có tính tương đồng về 
cấu trúc).

Với thiết kế dạng dữ liệu hướng văn bản, MongoDB 
là cơ sở dữ liệu thích hợp nhất để lưu trữ thông tin bệnh 
án gồm nhiều trường thông tin, các trường không đồng 
nhất giữa các bệnh án khác nhau hoặc các bệnh án của các 
bệnh khác nhau. Cấu trúc hướng văn bản của MongoDB 
cho phép người dùng có thể tạo các chỉ mục trên các thuộc 
tính của văn bản để tìm kiếm nhanh, điều này là khác biệt 
của MongoDB so với Cassandra. Đây là lý do để chúng 
tôi lựa chọn MongoDB thay cho Cassandra trong lưu trữ 
thông tin bệnh án.

Đánh giá thực nghiệm

Trong phần này, chúng tôi đánh giá hiệu năng của hệ 
thống HealthDL trong các thao tác đọc, ghi dữ liệu trên 
môi trường phân tán, khi gia tăng các kết nối tương tranh 
đồng thời. Chúng tôi đã cài đặt và tiến hành chạy đánh giá 
MongoDB và Cassandra với 2 công cụ đánh giá tiêu chuẩn 
là YCSB [15] và Cassandra-stress [16]. Hai công cụ này 
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đo số thao tác vào ra trung bình có thể thực thi trong 1 s 
với khối dữ liệu vào ra được cung cấp sẵn.  

Đánh giá thành phần lưu trữ thông tin bệnh án 
MongoDB	

MongoDB được cài đặt trên môi trường ảo hoá sử dụng 
docker-compose, cụm máy tính gồm 30 nút ảo chia sẻ cấu 
hình: 2 CPU (Haswell 2.3 G), 1 SSD (Intel 800 GB SATA 
6 Gb/s), RAM (128 GB).

Kết quả đối với kịch bản chỉ đọc và chỉ ghi cho hiệu 
năng cao với tốc độ đạt từ 70.000 đến 100.000 bản ghi/s, 
độ trễ là 1 đến 1,5 s với số lượng client kết nối tới lên đến 
100 client tương tranh đồng thời (hình 7A và 7B).

Hình 7A. Kịch bản ghi dữ liệu MongoDB.

Hình 7B. Kịch bản đọc dữ liệu MongoDB.
Trong đó: 100% write workload: Kịch bản chỉ ghi; 
100% read workload: Kịch bản chỉ đọc; Ops/sec: Số tác 
vụ thực thi thành công trong 1 s; Theads: Số lượng kết 
nối đến hệ thống; Throughput: Giải nghĩa như ops/sec; 
95thPercentileLatency: Độ trễ của 5% tác vụ có độ trễ cao 
nhất; 99thPercentileLatency: Độ trễ của 1% tác vụ có độ 
trễ cao nhất; AverageLatency: Độ trễ trung bình.

Trong hình 7A và 7B, đường kẻ màu tím mô tả độ trễ 
trung bình, đường kẻ màu xanh dương mô tả độ trễ trung 
bình của 5% các tác vụ có độ trễ cao nhất, đường kẻ màu 
xanh lá mô tả độ trễ trung bình của 1% các tác vụ có độ trễ 
cao nhất. Từ biểu đồ kết quả cho thấy, chỉ 1% các tác vụ 
có độ trễ cao nhất là 3,5 s.

Với kịch bản các tác vụ đọc và ghi là tỷ lệ 50/50 (vừa 
đọc vừa ghi) cũng cho kết quả tốt, với tốc độ trung bình 
70.000 bản ghi/s, độ trễ trung bình là 1,4 s (hình 8). Trong 
hình 8, đường kẻ màu xanh dương mô tả độ trễ trung bình 
của các tác vụ đọc, đường kẻ màu tím mô tả độ trễ trung 
bình của các tác vụ ghi. Từ kết quả này cho thấy rằng, độ 
trễ của hai dạng tác vụ này không quá chênh lệch với nhau. 

Hình 8. Kịch bản đọc ghi đồng thời MongoDB (50/50 
read/write workload: Kịch bản đọc ghi đồng thời; Ops/sec: 
Số tác vụ thực thi thành công trong 1 s; Theads: Số lượng 
kết nối đến hệ thống; Throughput: Giải nghĩa như ops/sec; 
AverageLatencyRead: Độ trễ trung bình của tác vụ đọc dữ 
liệu; AverageLatencyWrite: Độ trễ trung bình của tác vụ 
ghi dữ liệu).

Mặc dù khi xây dựng một cụm MongoDB phân tán ảo 
bằng docker-compose, các nút sẽ không sử dụng được trọn 
vẹn tài nguyên phần cứng tốt nhất, nhưng kết quả trả về 
rất khả quan đối với yêu cầu của việc nhập liệu, lưu trữ và 
chia sẻ bệnh án.

Đánh giá thành phần lưu trữ dữ liệu từ thiết bị y sinh 
Cassandra

Cassandra được cài đặt trên 3 máy chủ riêng biệt với 
cấu hình mỗi máy như sau: 2 CPU (Haswell 2.3 G), 1 SSD 
(Intel 800 GB SATA 6 Gb/s), RAM (128 GB). Kịch bản 
thử nghiệm đo số lượng các thao tác đọc, ghi/s và độ trễ 
trung bình. Các thử nghiệm qua gia tăng số lượng các tiến 
trình client thực thi các thao tác đọc, ghi dữ liệu tương 
tranh đồng thời. 
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Trong thử nghiệm các tiến trình tương tranh chỉ thực 
thi các thao tác ghi (hình 9A), các tiến trình tương tranh 
chỉ thực thi các thao tác đọc (hình 9B), Cassandra đáp ứng 
hiệu năng cao với số thao tác xử lý từ 250.000 đến 300.000 
bản ghi/s. Độ trễ trung bình từ 0,2 đến 0,3 ms. Với kịch 
bản đọc, ghi tương tranh (hình 10) Cassandra vẫn đáp ứng 
được số thao tác từ 250.000 đến 300.000 bản ghi/s. 

Đường kẻ màu tím mô tả độ trễ trung bình, đường kẻ 
màu xanh dương mô tả độ trễ trung bình của 5% các tác 
vụ có độ trễ cao nhất, đường kẻ màu xanh lá mô tả độ trễ 
trung bình của 1% các tác vụ có độ trễ cao nhất. Từ kết 
quả nhận thấy rằng, chỉ có 1% các tác vụ có độ trễ cao 
nhất là 1,6 ms.

Hình 9A. Gia tăng thao tác tương tranh chỉ ghi.

Hình 9B. Gia tăng thao tác tương tranh chỉ đọc.
Trong đó: 100% write workload: Kịch bản chỉ ghi; 
100% read workload: Kịch bản chỉ đọc; Ops/sec: Số tác 
vụ thực thi thành công trong 1 s; Theads: Số lượng kết 
nối đến hệ thống; Throughput: Giải nghĩa như ops/sec; 
95thPercentileLatency: Độ trễ của 5% tác vụ có độ trễ cao 
nhất; 99thPercentileLatency: Độ trễ của 1% tác vụ có độ 
trễ cao nhất; AverageLatency: Độ trễ trung bình.

Hình 10. Đọc ghi tương tranh đồng thời trên Cassandra 
(50/50 read/write workload: Kịch bản đọc ghi đồng thời; 
Ops/sec: Số tác vụ thực thi thành công trong 1 s; Theads: 
Số lượng kết nối đến hệ thống; Throughput: Giải nghĩa như 
ops/sec; AverageLatencyRead: Độ trễ trung bình của tác 
vụ đọc dữ liệu; AverageLatencyWrite: Độ trễ trung bình 
của tác vụ ghi dữ liệu).

Các kết quả thử nghiệm với MongoDB và Cassandra 
trên môi trường tương tranh cho thấy, các thành phần đáp 
ứng hiệu năng cao ngay cả trong điều kiện đọc ghi tương 
tranh đồng thời. Về hiệu năng, Cassandra cho hiệu năng 
cao hơn về số thao tác/s, phù hợp với lưu trữ các dữ liệu 
đến từ thiết bị y sinh thời gian thực.

Kết luận

Trong bài báo này, chúng tôi giới thiệu HealthDL, hệ 
thống thu thập và lưu trữ dữ liệu lớn cho y tế. Kết quả đánh 
giá hiệu năng của thành phần lưu trữ trên môi trường thử 
nghiệm chứng minh khả năng đáp ứng tốt với các yêu cầu 
nghiệp vụ đọc ghi dữ liệu tương tranh đồng thời. Về thiết 
kế tổng thể, hệ thống cấu thành từ các thành phần phân 
tán, có tính khả mở cao, hỗ trợ mô hình dữ liệu linh hoạt. 
Trong tương lai, chúng tôi sẽ triển khai hệ thống trong 
thực tiễn và tiến hành tích hợp với thành phần phân tích 
dữ liệu y tế phân tán. 
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